Системы автоматизации. Автоматизированные системы управления технологическими процессами ­ существенное снижение стоимости монтажа и обслуживания благодаря интегральной конструкции

  • Быков Иван Андреевич , бакалавр, студент
  • Волжский политехнический институт (филиал) Волгоградский государственный технический университет
  • ПРИРОДНЫЙ ГАЗ
  • АВТОМАТИЗАЦИЯ
  • ПРОЦЕСС
  • ОЧИСТКA

Данная публикация посвящена разработке системы управления технологическим процессом очистки природного газа, с целью повышения экономической эффективности, расположенном на предприятии ОАО «Волжский Оргсинтез». В работе разрабатывалась система автоматического управления путем замены устаревших компонентов на современные, с использованием в качестве основы для системы автоматического управления микропроцессорного контроллера фирмы ОВЕН ПЛК 160.

  • Разработка автоматизированной системы управления технологическим процессом синтеза аммиака
  • О возможности использования наполнителя к смазкам для улучшения приработки пар трения
  • Разработка автоматизированной системы управления технологическим процессом разделения воздуха
  • Разработка автоматизированной системы управления процессом производства смазывающе-охлаждающей жидкости

Использование природного газа без очистки в технологическом процессе нецелесообразно. Содержащиеся в нем примеси, в частности, этан, пропан и углеводороды высшего ряда, сероводород несовместимы с нормальной работой генератора цианированных газов и приводят к зауглероживанию и отравлению платинового катализатора. Поэтому возникает необходимость в предварительной очистке природного газа.

Автоматизация процесса очистки природного газа позволяет улучшить качество регулирования, улучшает условия труда рабочих, так как применение автоматизации позволяет сократить до минимума пребывания рабочих в производственных помещениях

Рисунок 1. Технологическая схема очистки природного газа.

Основные показатели эффективности:

  • Качество конечного продукта: концентрация примесей в газе
  • Производительность: количество газа за единицу времени
  • Экономические затраты: расход природного газа, расход азота, воды и электроэнергии

Адсорбенты, применяемые в процессах очистки от загрязнений отходящих газов, обязаны удовлетворять надлежащим требованиям:

  • обладать большой адсорбционной способностью при впитывании загрязнений при небольших скоплениях их в газовых смесях;
  • иметь высокую избирательность;
  • обладать высокой механической прочностью;
  • иметь способность к восстановлению;
  • обладать небольшой стоимостью.

Главными промышленными адсорбентами считаются пористые тела, имеющие большой объем микропор. Характеристики адсорбентов определяются природой материала, из которого они сделаны, и пористой внутренней структурой.

Цели управления: поддерживать концентрацию вредных примесей в газе на минимальном уровне при оптимальном количестве получаемого очищенного газа и минимальных затратах на процесс при условии, что процесс должен быть безаварийным, безопасным и непрерывным.

Выбор регулируемых параметров

Качество не подлежит регулированию, так как отсутствуют средства автоматизации для измерения концентрации примесей в газе.

Параметры влияющие на технологический процесс:

  • расход природного газа;
  • расход воды;
  • расход азота;
  • температура природного газа на выходе из холодильника;
  • давление в демпферах;
  • давление в сборниках.

Контролируемые параметры выбираются из следующих соображений: при минимальном их количестве они должны дать максимум информации о ходе процесса.

Контролю прежде всего подлежат все регулируемые параметры: давление в демпферах, температура природного газа на выходе из холодильника, давление в сборниках, разность давлений в адсорберах.

Контролю подлежат параметры, текущее значение которых необходимо знать для подсчёта технико-экономических показателей: расход воды, азота, продувочного газа, природного газа, температура электродвигателя компрессора.

При выборе сигнализируемых параметров необходимо проанализировать объект на пожаро-взрывобезопасность и выявить параметры, которые могут привести к аварийной ситуации в объекте.

При выборе технических средств в данном проекте предлагается использование следующих элементов:

В качестве датчиков температуры использованы термопары с унифицированным выходным сигналом Метран - 280Ex. В качестве датчиков избыточного давления используются преобразователи давления Метран-150 Ex, предназначенные для непрерывного преобразования избыточного давления в унифицированный выходной токовый сигнал. Для измерения расхода был выбран расходомер Rosemount8800D Ex фирмы Emerson. Для внесения регулирующего воздействия применяются исполнительные механизмы МИМ-250. В качестве электропривода для компрессора выбран частотный преобразователь типа HYUNDAI N700E-2200HF. Электропневматический преобразователь ЭП-Ех используется для преобразования унифицированного непрерывного сигнала постоянного тока в унифицированный пропорциональный пневматический непрерывный сигнал. Пассивный барьер искрозащиты БИП-1 используется для обеспечения искробезопасности цепей электропневмопреобразователей ЭП-Ех и электропневмопозиционеров ЭПП-Ех, находящихся во взрывоопасной зоне. Для питания датчиков, а также модулей контроллера выбран блок питания DLP180-24 24В DC/7,5A фирмы TDK-Lambda. Для контроля и регулирования технологических параметров процесса выбирается программируемый логический контроллер ПЛК160 фирмы ОВЕН.

При определении показателей эффективности процесса был сделан вывод, что основным показателем эффективности является качество получаемого продукта на выходе из объекта управления. В качестве регулирующего контроллера был выбран ОВЕН ПЛК 160, который обеспечивает заданное регулирование процессом получения цианистого водорода.

По сравнению с действующей системой были сформированы и решены основные задачи оптимизации системы управления, такие как составление математической модели объекта управления. Был произведен анализ наблюдаемости и управляемости объекта управления, анализ качества управления объектом. Произведен расчет настроечных коэффициентов П–, ПИ–, ПИД–регуляторов, проведено моделирование процесса управления. В ходе расчетов было выяснено, что ПИД–регулятор обладает наилучшими показателями качества управления.

Список литературы

  1. Шувалов В.В., Огаджанов Г.А., Голубятников В.А. Атоматизация производственных процессов в химической промышленности. - М.: Химия 1991. - С. 480.
  2. Кутепов А. М., Бондарева Т. И., Беренгертен М. Г. Общая химическая технология. – М. : Высшая школа, 1990. – 387 с.
  3. Автоматизированные системы управления в промышленности: учеб. пособие / М. А.Трушников [и др.] ; ВПИ (филиал) ВолгГТУ. - Волгоград: ВолгГТУ, 2010. - 97 с.
  4. Основы автоматизации типовых технологических процессов в химической промышленности и в машиностроении: учеб. пособие / М. А. Трушников [и др.] ; ВПИ (филиал) ВолгГТУ. - Волгоград: ВолгГТУ, 2012. - 107 с.

Скачать документ

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР КОНТРОЛЯ И ДИАГНОСТИКИ

технических систем

ОАО "НИЦ КД"


1. РАЗРАБОТАНЫ ОАО "НИЦ КД" (Научно-исследовательский центр контроля и диагностики технических систем)

2. ПРИНЯТЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ приказом ОАО "НИЦ КД" от 25.12.2001 № 36


1 ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1 Технический контроль является неотъемлемой составной частью технологического изготовления, испытания и ремонта изделия.

Технологическое проектирование технического контроля осуществляется в виде:


1.1.2 Процесс технического контроля разрабатывают как совокупность взаимосвязанных операций технического контроля для отдельных групп и типов материалов, заготовок, полуфабрикатов, деталей и сборочных единиц, а также для отдельных видов технического контроля и производств.

При необходимости разрабатывают процесс технического контроля для отдельных исполнителей контроля и заказчика.

1.1.3 Операцию технического контроля разрабатывают для входного, операционного и приемочного контроля отдельных объектов контроля или контролируемых признаков (параметров), а также для операционного контроля технологического процесса получения материала, заготовки, полуфабрикатов, детали, сборочной единицы после завершения определенной технологической операции обработки (сборки).

1.1.4 Степень детализации системы, процессов, операции технического контроля в технологической документации устанавливают предприятия в зависимости от сложности объектов контроля, типа, вида и условий производства.

1.1.5 Технологическую документацию на системы, процессы, операции технического контроля согласовывают с отделом технического контроля предприятия-изготовителя.


1.2 Технологическое проектирование технического контроля должно обеспечивать заданные показателя процесса контроля с учетом затрат на его реализацию и потерь от брака в производстве и при использовании продукции вследствие ошибок контроля или его отсутствия.

1.3 Устанавливаются обязательные показатели процесса контроля:

производительность или трудоемкость контроля;

характеристики достоверности контроля;

комплексный экономический показатель.

В зависимости от специфики производства и видов объектов контроля допускается использовать другие показатели процессов контроля (стоимость, объем, полнота, периодичность, продолжительность контроля и т.д.).

1.4 Методику расчета показателей процессов контроля и порядок их учета устанавливает предприятие-разработчик. Методы экономического обоснования технического контроля приведены в приложении А.

1.5 При анализе затрат на реализацию процесса контроля необходимо учитывать:

объем выпуска и сроки изготовления продукции;

технические требования к продукции;

технические возможности средств контроля;

затраты на приобретение средств контроля и поверочного оборудования и их эксплуатацию.

1.6 При анализе потерь от брака вследствие ошибок контроля или его отсутствия необходимо учитывать:

уровень дефектности (долю брака) продукции, подвергающейся контролю;

значимость дефектов по контролируемым признакам (критические, значительные и малозначительные);

потери от ложного брака вследствие ошибок контроля первого рода, возникающие в производстве;

потери в производстве от пропуска брака вследствие ошибок контроля второго рода, а также потери у потребителя от пропуска брака вследствие ошибок контроля второго рода;

ущерб от поставки продукции не соответствующей установленным требованиям.

1.7 Методика определения вероятностей ошибок контроля первого и второго рода приведена в приложении Б.

2 ТРЕБОВАНИЯ К ТЕХНИЧЕСКОМУ КОНТРОЛЮ И ТЕХНОЛОГИЧЕСКОМУ ПРОЕКТИРОВАНИЮ ТЕХНИЧЕСКОГО КОНТРОЛЯ

2.1 Технический контроль должен предотвращать пропуск дефектных материалов, полуфабрикатов, заготовок, деталей и сборочных единиц на последующие этапы изготовления, испытания, ремонта и потребления.

2.2 Технический контроль должен соответствовать требованиям действующей на предприятии системы менеджмента качества.

2.3 Технический контроль должен соответствовать требованиям промышленной безопасности, пожаро- и взрывобезопасности, промышленной санитарии и правилами защиты окружающей среды.

2.4 Технологическое проектирование технического контроля осуществляют с учетом характеристик технологического процесса изготовления, испытания и ремонта изделия с обеспечением необходимой взаимосвязи и взаимодействия между ними.

2.5 При технологическом проектировании технического контроля должны обеспечиваться:

достоверная оценка качества продукции и снижение потерь от брака как при изготовлении, так и использование продукции;

повышение производительности труда;

снижение трудоемкости контроля, особенно в процессах с тяжелыми и вредными условиями труда;

возможное совмещение операций изготовления, испытания и ремонта с операциями технического контроля;

сбор и обработка информации для контроля, прогнозирования и регулирования технологических процессов обработки и сборки;

оптимизация технического контроля по установленным технико-экономическим критериям.

2.6 При технологическом проектировании технического контроля по возможности следует обеспечивать единство измерительных баз с конструкторскими и технологическими.

2.7 При технологическом проектированием САК должны обеспечиваться:

увязка работ по созданию САК с работами по созданию ГПС, АСУ, АСУП, САПР, АСТПП, АСУТП;

максимальная гибкость процесса контроля и управляемость им;

адаптивность к условиям производственного процесса;

достижение необходимой полноты и надежности контроля;

внедрение прогрессивных автоматизированных приборов на базе цифровой и аналоговой техники;

внедрение локально замкнутых САК и гибких производственных изделий.

3 ПОРЯДОК РАЗРАБОТКИ ПРОЦЕССОВ (ОПЕРАЦИЙ) ТЕХНИЧЕСКОГО КОНТРОЛЯ

3.1 Основные этапы разработки процессов технического контроля, задачи, решаемые на этапе, основные документы, обеспечивающие решение задач, приведены в табл. 1.

Таблица 1

Этап разработки процессов

Задачи, решаемые на этапе

1. Подбор и анализ исходных материалов для разработки процессов контроля

Ознакомление с изделием, требованиями к изготовлению, испытаниям, ремонту и эксплуатации

Конструкторская документация на изделие. Технологическая документация на изготовление, испытание и ремонт изделия

Подбор и анализ справочной информации, необходимой для разработки процесса контроля

Объем и сроки изготовления изделия. Перспективные методы и процессы контроля Производственные инструкции на проведение контроля

Оценка возможности и стабильности технологического процесса изготовления, испытания и ремонта. Определение номенклатуры объектов контроля (продукции, средств технологического оснащения, технологических процессов изготовления, испытания и ремонта, технологической документации). Установление видов контроля по его объектам.

Определение технических требований на операции контроля

Конструкторская документация на изделие.

Методика выбора объектов контроля

Методика установления видов технического контроля

3. Выбор действующего типового, группового процесса (характеристики) технического контроля или поиск аналога единичного процесса технического контроля

Отнесение объекта контроля к действующему типовому, групповому или единичному процессу контроля с учетом количественной оценки групп изделий

Примечание. При наличии разработанного перспективного процесса технического контроля на изделие его следует брать за основу при выборе действующего технологического процесса

Документация групповых, типовых и единичных процессов технического контроля для данной группы изделий. Документация перспективных процессов технического контроля для данной группы изделий. Документация перспективных процессов технического контроля

Конструкторская документация

Технологическая документация на изготовление, испытание и ремонт изделия

4. Составление технологического маршрута процесса контроля

Определение состава и последовательности технологических операций технического контроля, обеспечивающих своевременное выявление и устранение дефектов и получение информации для оперативного регулирования и прогнозирования технологического процесса и обратной связи с АСУ и АСУТП.

Методика размещения постов контроля по технологическому процессу изготовления, испытания и ремонта изделия.

Технологическая документация на изготовление, испытание и ремонт

Предварительное определение состава контрольного оборудования

5. Разработка технологических операций технического контроля

Выбор контролируемых параметров (признаков).

Выбор схем контроля, включая определение контрольных точек объектов, измерительных баз

Методика выбора контролируемых параметров (признаков).

Методика выбора схем контроля

Стандарты и методические материалы по системам качества, по статистическим методам

Выбор методов и средств контроля

Методика выбора методов и средств контроля

Каталоги (альбомы, картотеки) средств контроля

Определение объема (плана) контроля

Классификатор технологических операций контроля

Разработка последовательности переходов технического контроля

Классификатор технологических переходов контроля

6. Нормирование процессов контроля

Установление исходных данных, необходимых для расчетов норм времени и расхода материалов

Нормативы времени и расхода материала

Методика разработки норм времени на технический контроль

Расчет и нормирование затрат труда на выполнение процесса

Классификатор разрядов работ и профессий исполнителей контроля

Определение разряда работ и обоснование профессии исполнителей контроля для выполнения операций в зависимости от сложности этих работ

7. Расчет технико-экономической эффективности процесса контроля

Выбор оптимального варианта процесса технического контроля

Методика оптимизации технического контроля

8. Оформление технологических документов на технический контроль

Заполнение технологических документов. Нормоконтроль технологической документации.

Согласование технологической документации с заинтересованными подразделениями и ее утверждение

Стандарты ЕСТД

9. Разработка документации результатов контроля

Установление порядка оформления результатов контроля и необходимого состава форм документов.

Разработка технологических паспортов, карт измерения, журналов контроля

Методика оформления результатов контроля

Стандарты ЕСТД

3.2 Необходимость каждого этапа, состав задач и последовательность их решения определяются в зависимости от видов и типа производства и устанавливаются предприятием.

4 ПОРЯДОК РАЗРАБОТКИ СИСТЕМ АВТОМАТИЧЕСКОГО (АВТОМАТИЗИРОВАННОГО) КОНТРОЛЯ

4.1 Основные этапы разработки системы автоматического контроля, задачи, решаемые на этапе, основные документы, обеспечивающие решение этих задач, приведены в табл.2.

Таблица 2

Этап разработки систем автоматического контроля

Задачи, решаемые на этапе

Основные документы, обеспечивающие решение задач

1. Подбор и анализ исходных материалов для разработки системы автоматического контроля

Ознакомление с изделием, требованиями к изготовлению, испытаниям, ремонту и эксплуатации.

Подбор и анализ справочной информации, необходимой для разработки системы автоматического контроля

Конструкторская документация на изделие

Технологическая документация на изготовление, испытания и ремонт изделия

Объем и сроки изготовления изделия

Информация по перспективным методам и системам автоматического контроля

Производственные инструкции на проведение технического контроля

Каталоги перспективных автоматизированных средств и систем контроля, в том числе координатно-измерительных машин, измерительных роботов и т.д.

2. Выбор объектов и видов контроля

Оценка стабильности технологического процесса изготовления, испытания, и ремонта. Определение номенклатуры объектов контроля (продукция, средства контроля технологического оснащения, технологические процессы изготовления, испытания и ремонта)

Установление видов контроля по объектам контроля

Методика выбора объектов и видов контроля в гибких и автоматизированных производствах

3. Составление обобщенного процесса контроля

Анализ совокупности технологических процессов контроля

Синтез обобщенного маршрута контроля

Проектирование типовых операций контроля. Установление сводного перечня контролируемых параметров.

Установление основных процессов контроля (централизация, степень автоматизации совместно с обработкой)

Методика составления обобщенных процессов контроля

4. Разработка структуры САК

Разработка базового комплексов алгоритмов обработки контрольно-измерительной информации. Разработка системных решений САК

Разработка планируемых решений

Рациональное разделение функций контроля. Выбор схем контроля включает определение контрольных точек объекта

Выбор методов и средств контроля, в том числе типов датчиков и устройств обработки первичной информации, устройств ввода информации оператором вручную (периферийное устройство). Выбор действующих модулей (блоков) САК.

Документация действующих модулей и систем автоматического контроля для аналогичных групп объектов контроля

Построение алгоритмов контроля и разработка математических методов обработки результатов измерения и контроля

Каталоги (альбомы, картотеки) автоматизированных средств контроля и систем контроля.

Каталоги алгоритмов и методов обработки результатов измерений и контроля

5. Разработка информационного обеспечения системы автоматического контроля

Определение перечня информации и формы ее представления в систему контроля.

Определение перечня информации и формы ее представления из системы контроля в систему управления.

Оценка избыточности информационных потоков в системе контроля

Методика информационного обследования системы автоматического контроля

6. Разработка программно-математического обеспечения системы автоматического контроля

Создание и отладка программно-математического обеспечения, включая: ввод-вывод информации, обмен информацией с системами;

информационное обеспечение производственного процесса;

переработка информации по методикам измерения;

информационное обеспечение работы оборудования и систем управления;

тестовые программы;

управление работой вспомогательного оборудования

Инструкция по программированию

7. Разработка правил эксплуатации и обслуживания системы автоматического контроля

Разработка инструкции, методических указаний, правил для эксплуатирующего и обслуживающего персонала

Правила эксплуатации и обслуживания систем автоматического контроля

8. Оценка эффективности системы автоматического контроля

Оценка трудоемкости и производительности контроля

Определение и обоснование состава обслуживающего персонала

Расчёт экономической эффективности

Методика оценки эффективности системы автоматического контроля

9. Оформление документации на систему автоматического контроля

Согласование технологической документации с заинтересованными подразделениями

Учет требований государственной системы обеспечения единства измерений

Стандарты ЕСТД и ГСИ

4.2 Необходимость каждого этапа, состав задач и последовательность их решения определяются в зависимости от видов и типа производства и устанавливаются предприятием.

Приложение А

МЕТОДИКА ЭКОНОМИЧЕСКОГО ОБОСНОВАНИЯ

ТЕХНИЧЕСКОГО КОНТРОЛЯ

1 Экономическое обоснование варианта контроля выполняют с помощью комплексного экономического показателя К э , представляющего собой сумму приведенных затрат на реализацию процесса контроля З к и потерь от брака вследствие ошибок контроля или его отсутствия П б .

К э = З к + П б

2 Приведенные годовые затраты находят по формуле:

З к = И + Е н К

где И - годовые эксплуатационные издержки;

Е н - норматив окупаемости капитальных вложений;

К - капитальные вложения в процессе контроля, руб.

Расчет годовых эксплуатационных издержек и капитальных вложений выполняются в соответствии с применяемыми методиками.

При расчете годовых эксплуатационных издержек учитывают следующие составляющие.

;

;

.

Для контрольного оборудования и прибора, использующего различные виды энергии, затраты рассчитывают по каждому виду энергии, а затем суммируют.

;

.

Перечень обозначений величин, входящих в формулы, приведен в табл. 3.

Таблица 3

Обозначение

Размеренность

Наименование обозначения

Сумма затрат на заработную плату исполнителей контроля

C а

Амортизация контрольного оборудования и приборов на время контроля

C э

Затраты на все виды энергии, потребляемые в процессе контроля

Затраты на контрольную оснастку (приспособления и инструмент), потребную для проведения контроля

C п.з

Стоимость подготовительно-заключительных работ

Время, затрачиваемое j -м исполнителем контроля на контроль объекта

Часовая заработная плата j -гo исполнителя контроля

Количество исполнителей контроля, участвующих в контроле объекта

Процент, учитывающий начисления на заработную плату и премии

Количество объектов контроля, которое может одновременно контролировать исполнитель

Количество типов контрольного оборудования и приборов, используемых для контроля данного объекта

А i

Стоимость единицы i -гo средства контроля, используемого для контроля объекта

Количество i -гo средства контроля

Норма амортизационных отчислений за год

Годовой фонд времени i -гo средства контроля

t о i

Время работы i -гo средства контроля при контроле объекта

Количество объектов контроля, которое может одновременно контролироваться на i -м контрольном оборудовании

Коэффициент загрузки контрольного оборудования или прибора, определяемый исходя из фактических условий контроля или принимаемый как среднее значение этого коэффициента для данного предприятия

Ц э i

руб./кВт ч

Цена единицы используемой энергии для i -гo контрольного оборудования или прибора

Мощность, потребляемая i -м контрольным оборудованием или прибором

Коэффициент использования мощности

Количество контрольной оснастки, используемой для контроля данного объекта

Коэффициент использования i -й контрольной оснастки

Срок службы i -й контрольной оснастки

Количество исполнителей, занятых на подготовительно-заключительных операциях для данного объекта

t п.з j

Время затрачиваемое j -м исполнителем, занятым на подготовительно-заключительных операциях для данного объекта

R п.з j

Часовая заработная плата j -гo исполнителя, занятого на подготовительно-заключительных операциях для данного объекта

3 Потери от брака вследствие ошибок контроля или отсутствия контроля определяют по формуле:

3.1 Потери вследствие ошибок контроля i -го рода в производстве (забракование годных) определяют по формуле:

где N o - годовая программа контроля единиц продукции (в дальнейшем - деталей);

P гб - вероятность ошибки контроля 1-го рода, %;

C изг - себестоимость изготовления детали, руб;

C ост - остаточная стоимость забракованной детали, руб.

3.2 Потери вследствие ошибок контроля 2-го рода в производстве (пропуск брака в технологический процесс) определяют по формуле:

3.3 Потери вследствие ошибок контроля 2-го рода у потребителя (пропуск брака в готовое изделие) определяют по формуле:

Величину C потр находят на основании технико-экономического анализа потребительских свойств изделия с учетом влияния дефектов по контролируемым признакам.

При отсутствии данных для анализа допускается укрупненная оценка величины C потр как части стоимости готового изделия, пропорциональной коэффициенту весомости дефекта.

3.4 Потери, связанные со штрафом за поставку продукции пониженного качества, определяют по формуле:

где C с - себестоимость единицы продукции, руб.;

M п - количество единиц продукции пониженного качества;

Ш к - размер штрафа на поставку продукции пониженного качества.

3.5 Потери, связанные с уценкой продукции, определяют по формуле

,

где - себестоимость единицы продукции после уценки, руб.;

М у - количество единиц уцененной продукции.

4 Вероятности ошибок контроля для случая измерительного допускового контроля определяют согласно приложению 2.

Допускаются и другие научно обоснованные методы определения вероятностей ошибок контроля.

5 Годовой экономический эффект при сравнении выбираемого варианта контроля с базовым находят по формуле

где индексы 1 и 2 относятся, соответственно, к базовому и выбираемому вариантам.

Для оптимального варианта контроля К Э 2 = minи Э = max


Приложение Б

МЕТОДИКА

ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ ОШИБОК КОНТРОЛЯ 1 И 2-ГО РОДА

1 Понятия ошибок контроля 1 и 2-го рода - согласно табл.4.

Таблица 4

Примечание. Величины P гб и P дп , выраженные в процентах соответствуют величинам n и m по ГОСТ 8.051-81 при условии:

где s - значение среднего квадратического отклонения погрешности измерения.

2 При отсутствии контроля принимают

P гб = 0; P дп = q о , (1)

где q о - средний входной уровень дефектности (доля брака), %.

3 При сплошном измерительном контроле по одному параметру вероятности ошибок контроля находят в следующем порядке:

3.1 Определяют относительную погрешность контроля по формуле:

где d - погрешность измерения;

IT - допуск на контролируемый параметр.

3.2 Принимают в качестве закона распределения контролируемого параметра один из двух основных законов - нормальный или Релея.

3.2.1 Нормальный закон принимают для тех параметров, отклонения которых от номинального значения могут быть как положительными, так и отрицательными, и для которых установлены две границы поля допуска (нижняя и верхняя). К таким параметрам относятся, например, линейные и угловые размеры, твердость, давление, напряжение и др.

3.2.2 Закон Релея принимают для тех параметров, отклонения которых могут быть только положительными (или только отрицательными) и для которых установлена только верхняя (или только нижняя) граница поля допуска, а другой (естественный) границей является ноль. К таким параметрам относятся, например, отклонения формы и расположения, биения, уровень помехи, наличие примесей и др.

3.3 Находят вероятности ошибок контроля по табл. 5 и 6.

3.3.1 Если при контроле вводят приемочный допуск путем сдвига обеих (для двустороннего допуска) или одной (для одностороннего допуска) из приемочных границ внутрь поля допуска на некоторую долю l (0 ? l ? 1) от допускаемой погрешности d, то вероятности ошибок контроля находят по формулам:

где под P гб (q о , d o ) и P дп (q о , d о ) подразумеваются значения вероятностей выраженные в табл. 5 и 6 при значениях аргументов q о и d о .

3.3.2. При контроле с сортировкой на Z размерных групп для нахождения вероятности можно воспользоваться формулой:

4 При выборочном контроле по одному параметру с применением планов статистического приемочного контроля принимают.

P гб = 0; P дп = q о · P (q о ), (6)

где P (q о ) - оперативная характеристика соответствующего плана контроля.

4.1 При выборочном измерительном контроле учитывают влияние погрешности измерения на оперативную характеристику плана контроля, для чего можно использовать формулу:

P дп = q о · P (q о + Dq ), (7)

где - Dq сдвиг оперативной характеристики вследствие влияния погрешности измерения, определяемый по табл. 7.

4.2 Построение оперативной характеристики плана контроля осуществляется в соответствии с ГОСТ Р 50779.71-99, ГОСТ Р 50779.74-99 и другими инструктивно-методическими материалами по статистическому приемочному контролю.

5 При контроле одновременно по двум и более параметрам вероятности ошибок контроля находят по формулам:

n ?5; (8)

где P гб i , P дп i - соответствующие вероятности для каждого (i -го) параметра;

n - число контролируемых параметров.

Если n > 5 или если n ? 5, но P гб > 50%, пользуются формулой

, (10)

где - символ произведения всех скобок для i = 1, 2..., n .

6 Примеры определения вероятностей ошибок контроля 1 и 2-го рода.

6.1 Объект контроля - направляющая втулка клапан автомобильного двигателя. Контролируемый параметр - наружный диаметр. Номинальный размер -18 мм, допуск по 7 квалитету IТ = 18 мкм. Средний входной уровень дефектности q = 1%. Допускаемая погрешность измерения по ГОСТ 8.051-81 составляет 5.0 мкм. Погрешность выбранного средства контроля (якобы рычажной) d = 4 мкм.

6.2 Определяем относительную погрешность контроля по формуле (2).

6.3 Принимаем нормальный закон распределения, так как допуск двусторонний.

6.4 Находим по табл. 5 P гб = 3,20% и по табл. 6 P дп = 0,43%

6.5 Вводим приемочный допуск путем средств обеих приемочных границ внутрь поля допуска на величину.

мкм . Тогда новый допуск

мкм.

Вычисляем:

1 + l= 1,5; (1 + l)d о = 1,5 · 0,22 = 0,33;

1 - l= 0,5; (1 - l)d о = 0,5 · 0,22 = 0,11.

Находим по табл. 5 P гб (q о ,(1 + l)d о ) = P гб (1%; 0,33) = 6,88%.

и по табл 6 Р дп (q о , (1 - l)d о ) = Р дп (1 %; 0,11) = 0,34%.

Находим по Формулам (3) и (4)

Р гб = (1 + l)P гб (q о ,(1 + l)d о ) = 1,5·6,88% = 10,32%;

Р дп = (1 - l)Р дп (q о ,(1 - l)d о ) = 0,5·0,34 = 0,17.

6.6 При сортировке на три размерные группы (без приемочного допуска) будет по прежнему Р гб = 3,20, а Р дп определяем по формуле (5) при Z = 3.

Р дп = 11·(0,22·3) 2 =4,79%

6.7 Выбираем план статистического приемочного контроля по альтернативному признаку по ГОСТ Р 50779.71-99. При объеме партии 2000 шт. и приемочном уровне дефектности 1% получаем код выборки 10, объем выборки n = 125 шт., приемочное число С = 3. Оперативная характеристика для кода выборки 10 показана на рисунке.

Определяем сдвиг оперативной характеристики по табл.7

при q о = 1%, d o = 0,22:

Dq = 2,1 %

По графику рисунка находим

P (q о + Dq ) = P(1%+2,1%) = P(3,1%) = 0,42.

По формуле (7) вычисляем:

Р дп = q о ·P (q о + Dq ) = 1%·0,42 = 0,42%.

Примечание - В данном случае вероятность браковки партии составит 1 - P (q о + Dq ) = 1 - 0,42 = 0,58, т.е. около 60% объема партии будет забраковано по результатам выборочного контроля. Следует либо увеличить приемочный уровень дефектности, либо повысить точность измерений.


Таблица 5

Вероятности ошибок контроля 1-го рода (неправильная браковка) Р гб , %

(1+l)d о

q о , %


Таблица 6

Вероятности ошибок контроля 2-го рода (неправильная приемка) Р дп , %

(1-l)d о

Уровень дефектности (доля брака), q о , %

Распределение контролируемого параметра по нормальному закону

Распределение контролируемого параметра по закону Релея


Таблица 7

Сдвиг оперативной характеристики D q , %

Уровень дефектности (доля брака), q о , %

Распределение контролируемого параметра по нормальному закону

Распределение контролируемого параметра по закону Релея

СПИСОК ИСПОЛНИТЕЛЕЙ

1. Основные положения

2. Требования к техническому контролю и технологическому проектированию технического контроля

3. Порядок разработки процессов (операций) технического контроля

4. Порядок разработки систем автоматического (автоматизированного) контроля

Приложение А Методика экономического обоснования технического контроля

Приложение Б Методика определения вероятностей ошибок контроля 1 и 2 рода

Технологические требования при разработке систем автоматического управления

При создании автоматических систем управления технологическими процессами сельскохозяйственного производства одним из наиболее ответственных этапов является разработка оптимального, то есть наиболее эффективного варианта технологического процесса, подлежащего автоматизации.

В связи с тем, что сельское хозяйство характеризуется многообразием отраслей производства и разнообразием технологических процессов, разработка оптимального технологического процесса в каждом конкретном случае представляет собой очень сложную задачу. Развитие унифицированных процессов сельскохозяйственного производства способствует успеху разработки оптимальных, пригодных для автоматизации технологических процессов. Поэтому очень актуальной, особенно в условиях перевода сельского хозяйства на промышленную основу, является проблема типизации, универсализации и даже стандартизации сельскохозяйственных технологических процессов и техники.

Перевод сельского хозяйства на промышленную основу тесно связан с процессами концентрации и интенсификации производства. В этих условиях, когда наряду с большими потоками сырья, энергии, труда идет большой поток взаимосвязанной информации, точное и правильное осмысление этой информации, принятия соответствующих оптимальных решений и вообще полноценное управление производством возможны только при использовании методов и средств автоматизации. Однако применение достижений автоматизации требует определенной технологической подготовки производственных процессов.

Опыт перевооружения ведущих отраслей народного хозяйства показывает, что эффективность автоматизации зависит от взаимосвязанного решения трех основных задач: 1) разработки новых технологических процессов и типизации их; 2) создание технологического оборудования, что обеспечивает качественное выполнение типизированного технологического процесса; 3) выработка алгоритмов эффективного управления технологическими процессами, операциями и оборудованием с помощью технических средств автоматики.

Решение первой задачи требует специальных знаний и необходимого опыта по определению заданных параметров точности, производительности, способов обработки, транспортировки, хранения, по созданию методов типизации технологических процессов и т. д., то есть здесь нужны знания и опыт специалистов-технологов сельскохозяйственного производства, что в полной мере владеют основами технологической науки.

Типизацию технологического процесса в сельскохозяйственном производстве целесообразно начинать с составления так называемого технологической цепочки.

Технологическая цепочка отражает взаимосвязь технологических процессов, отдельных операций и режимов машин, участвующих в их выполнении. Например, технологическую цепочку послеуборочной обработки зерна в потоке включает следующие операции: доставку зерна от комбайна, взвешивания зерна, его разгрузка, транспортировка норией, первичная очистка от крупных примесей на повітрорешітних машинах, транспортировки норией, сушки, охлаждения, транспортировки норией, вторичное очистки от мелких примесей, транспортировки шнеком, сортировка на триерах, сбор в бункер, взвешивания, транспортировки на склад, взвешивания и складирования.

Технологическая цепочка позволяет выявить порядок действия машин в соответствии с требованиями процесса, объем работ по операций, необходимое число машин, установить оптимальное агрегатирования и допустимый степень типизации технологических процессов. Таким образом, технологическая цепочка дает возможность глубоко проникнуть в саму технологию процесса во всех его аспектах.

Приступая к разработке систем автоматического управления, разработчик должен хорошо изучить объект автоматизации, вполне осознать все возможные режимы работы.

Следует иметь в виду, что разрабатывать автоматические системы управления объектом часто приходится для производства различных уровней развития. В связи с этим степень автоматизации и совокупность операции и режимов обусловлены уровнем развития самого производства. Следовательно, любой технологический процесс можно разделить на операции по-разному. Но при этом разделении разработчик всегда должен себе ответить на следующие основные вопросы.

1. Какие цель и задача системы автоматического управления?

2. Какие блоки составляют объект управления?

3. Какие функциональные и управляющие связи имеются между блоками, которые определяют будущую систему?

4. Какие режимы объекта управления и его блоков и сколько технологически допустимых переходов между этими режимами?

5. Какими конкретными алгоритмами описывается тот или иной режим?

6. Какие датчики и исполнительные элементы могут быть применены для данной системы?

7. Какие математические уравнения описывают взаимодействие управляющих сигналов и сигналов возмущения, характеризующие тот или иной режим работы систем?

После анализа технологических процессов или отдельных операций необходимо установить весь объем информационных параметров, характеризующих технологию и все их взаимосвязи.

Накопленная согласно поставленным вопросам информация должна быть отражена в компактной и удобной для дальнейшей работы форме. Именно это дает возможность выявить перечень информационных параметров.

Классификация информационных параметров и технологическую цепочку позволяют составить структурную схему системы управления, которая представляет собой совокупность объекта управления и управляющего устройства.

Следует иметь в виду, что неполная и неточная обработка всей информации приводит к ее искажения на следующих уровнях, к запаздыванию в принятии решений и мероприятий для согласования действий установок, поточных линий, цехов и в итоге к увеличению затрат на производство, снижение рентабельности, порчи продукции и т. д.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!