Технологические операции и их характеристики. Анализ способов и технических средств очистки корнеплодов. Характеристика способов очистки овощей На чем основан щелочной способ очистки овощей

корнеплод растениеводство очистка механизация

Технология обработки и подготовки кормовых корнеплодов к скармливанию зависит от зоотехнических требований, условий хозяйства, экономической целесообразности применения тех или иных способов и технологических средств. Корнеплоды являются необходимым, широко распространенным, высокоэффективным компонентом кормовой смеси в рационе крупного рогатого скота. Правильная подготовка их к скармливанию способствует рациональному использованию, повышению питательности и вкусовых качеств кормов, сокращению расходов энергии на пережевывание, улучшению усвоения кормов организмом животного. Загрязненность корнеплодов почвой и засоренность посторонними примесями вызывает необходимость их очистки перед скармливанием.

Обзор отечественных и зарубежных литератур показывает, что наиболее полно изучены технология и технические средства для подготовки кормовых корнеплодов к скармливанию. Однако процесс подготовки кормовых корнеплодов к скармливанию обладает несовершенством технологий мойки корнеплодов водой, поэтому последнее время ученые обращаются к сухой очистке кормовых корнеплодов. В связи с этим ниже приведен анализ результатов работ по разработке технических средств и созданию технологических линий.

Предложенная классификация технических средств для очистки кормовых корнеплодов от почвы позволяет более эффективно оценить существующие и выявить общие направления и сделать некоторый анализ их конструкций (рис. 1.1). При этом необходимо исходить из зоотехнических требований.

Рисунок 1.1.- Классификация устройств для очистки корнеплодов.

В направлении разработки технических средств для сухой очистки кормовых корнеплодов работают научно-исследовательские институты и вузы: БСХА, ВИЭСХ, ЧИМЭСХ, ЧГСХА и др. а так же зарубежные фирмы.

ВНИИживмаш предложил конструкцию агрегата для сухой очистки и измельчения корнеклубнеплодов на базе измельчителя ИКМ-5 (рис. 1.2.). Рабочим органом для сухой очистки является барабан предварительной сухой очистки, который установлен перед водяной ванной. Водяная ванна выполняет в данном случае функции камнеуловителя. При проведении испытаний агрегата для сухой очистки ИКУ-Ф-10 была получена остаточная загрязненность продукта после очистки не более 3% при расходе воды на одну тонну корнеклубнеплодов 100 л. Данному типу очистителей присущи большие энергозатраты. Хотя агрегат обладает высокой эффективностью очистки, однако ему присущи все недостатки, свойственные машинам для мойки корнеплодов, поэтому он не находит достаточного применения в сельском хозяйстве.

При разработке рабочих органов для очистки корнеплодов необходимо учитывать следующие условия :

Конструкция рабочих органов должна быть пригодной для очистки корнеплодов с различными физико-механическими свойствами;

При обработке корнеплодов остаточная загрязненность допускается не

Потеря корма при очистке не должна превышать 0.1%;

Рабочие органы должны копировать поверхность корнеплодов, вычищая почву из канавок.

Рисунок 1.2-Схема агрегата для сухой очистки и измельчения корнеплодов ИКУ-Ф-10 разработки ВНИИживмаш. 1 - барабан предварительной сухой очистки; 2 - ленточный конвейер; 3- выгрузное окно; 4 - водяная ванна; 5 - крылач; 6 - транспортер камней; 7 - транспортер корнеплодов; 8 - измельчитель.

В ВИЭСХ разработан барбанно-шеточный очиститель , состоящий из установленного на опорных роликах цилиндрического барабана со спиральной обрешеткой, внутри которого эксцентрично размещена щетка, вращающаяся навстречу барабану (рис. 1.3). Скорость вращения щетки составляла 150 мин-1, барабана - 30 мин-1, эксцентриситет щетки по отношению к барабану - 11 мм. Производительность очистителя менялась путем изменения угла наклона продольной оси барабана к горизонту от 0 до 12о через 3о. Однако примененная щетка большого диаметра не обеспечивала удаление почвы из канавок корнеплодов и эффект очистки оказался невысок - 50%.


Рисунок 1.3- Схема барабанно-щеточного очистителя корнеплодов разработки ВИЭСХ. 1 - корпус; 2 - загрузочный бункер; 3 - наклонная обрешетка; 4 - выгрузная горловина; 5 - щетка

Наиболее удачная подобная машина была создана в ОКБ СибНИИСХОЗа . Рабочий орган машины представляет собой вращающийся сетчатый барабан, внутри которого размещена щетка, вращающаяся в том же направлении, но с большей скоростью (рис 1.4). В очистителе предусмотрена регулировка зазора между щеткой и барабаном как в горизонтальной, так и в вертикальной плоскостях. Производительность машины достигает 10 т/ч. При начальной загрязненности вороха 12%остаточная загрязненность составила 1.5%. Однако данные очистители не нашли широкого применения в сельском хозяйстве из-за низкой разделяющей способности очищаемого вороха.

Рисунок 2.4 -Схема барабанно -щеточного очистителя корнеплодов конструкции СибНИИСХОЗ. 1 - сетчатый барабан; 2 - щетка; 3 - загрузочный бункер; 4 - выгрузной лоток.

Для наглядного сравнения показатели работы оборудования для очистки корнеплодов от примесей представлены в таблице 1.1

Таблица 1.1-Показатели работы оборудования для очистки корнеплодов

Из таблицы 2.2 видно, что лучшие показатели очистки имеют барабанно-щеточные рабочие органы: общее отделение примесей - 73%, свободной почвы - 57%, связанной почвы - 47% при минимальной повреждаемости корнеплодов 1,06%.

Кроме того, достоинствами таких очистителей являются надежность конструкции, активное воздействие щеток на обрабатываемый материал.

К барабанным очистителям относятся также корнеклубнемойка ПБ1500, разработанная в Чехословакии в 50-х годах и машина более позднего выпуска PRU-20. основными рабочими органами данных устройств является моечный барабан и барабан для сухой очистки, где за счет интенсивного перетирания корнеплодов о планки барабана и друг о друга отделяется до 40% загрязнений.

Таким образом, из многообразия существующих способов и технических средств очистки корнеплодов от примесей следует выделить очистители, рабочие органы которых содержат упругие элементы. Поэтому дальнейшей приняли на разработку рабочих органов очистителей с упругими элементами (щетками).

При разработке машин для подготовки корнеплодов к скармливанию необходимо изучить физико-механические свойства почвы, так как согласно исследований академика В.П. Горячкина почва в зависимости от влажности и механического состава находится в трех фазах: твердой, пластичной и текучей.

Чтобы очистить корнеплод от налипшего грунта, необходимо приложить определенную силу, которая бы разрушала или соскабливала почву с поверхности корнеплода.

Исследования преподователей кафедры механизации животноводства ЧГСХА показали, что на процесс очистки корнеплода щетками действует сила трения F щетки о почву на корнеплоде, сила масса корнеплода mg и вращающий момент Мщ. Для осуществления процесса очистки необходимы следующие условия:

Сила F должна быть больше составляющих сил связи почвы с корнеплодом или сил внутреннего трения почвы;

Линейные скорости корнеплода и щетки в точке контакта должны быть различны;

Ворс щетки должен быть упруго-деформированым.

Основное условие осуществления процесса очистки - наличие нормальной силы N между рабочим органом и корнеплодом, так как она обеспечивает возникновение силы трения F

F=N f1 > Pc+Pf,

где f1 - коэффициент трения скольжения щетки о почву;

Рс - сила сопротивления почвы сдвигу;

Pf = N f2 - сила трения щеток о почву;

f2 - коэффициент трения скольжения щетки о корнеплод.

Таким образом, проведенный анализ работ по обработке корнеплодов показал:

а - рабочий процесс щеточных очистителей недостаточно изучен, а полученные зависимости не полно отображают взаимодействие корнеплодов со щеточными рабочими органами.

б - совершенствование технологической линии обработки корнеплодов путем обоснования и разработки устройства для сухой очистки кормовых корнеплодов.

Общие положения, назначение и классификация.

Очистительное оборудование

Вопросы

Вопросы и тесты для самопроверки

1. В чем состоит сущность мойки.

2. Какие схемы моечных устройств используют в пищевом производстве.

3. Как классифицируют моечное оборудование.

4. Каково принципиальное устройство для мойки корнеклубнеплодов машины ММВ-2000 и пиллера.

5. Как классифицируют посудомоечные машины.

6. Каковы технологические операции и температурные режимы процесса мытьяпосуды в посудомоечных машинах.

7. Перечислите требования, предъявляемые к качеству мытья посуды в посудомоечных машинах.

Это оборудование предназначено для удаления с продуктов поверхностного слоя (кожицы с овощей и фруктов, чешуи с рыбы), имеющего небольшую пищевую ценность. К ним относят машины для очистки овощей и приспособление для чистки рыбы от чешуи.

Очистку овощей можно проводить химическим, термическим или механическим способом.

Термический способ – огневой и паровой.

Огневой способ: клубни в термоагрегатах в течении 3 – 15 сек подвергают обжигу при t 0 1200 – 1300 0 С., при этом кожура обугливается, слой проваривается на глубину 0,6 ÷ 1,5 мм. Далее клубни очищаются в пиллере.

При паровом способе клубни в паровых агрегатах подвергаются воздействию острым паром под давлением 0,4 ÷ 1,1 МПа и температуре > 100 ˚С в течении 1 – 2 мин, далее давление подает до атмосферного. В результате резкой разницы давлений влага в слое под кожурой закипает и превращается в пар, который отслаивает и разрывает кожуру клубней. Поверхностный слой клубней проваривается. Окончательная очистка в пиллере.

Химический способ заключается в обработке клубней раствором щелочи, далее обработка механическим способом с нейтрализацией щелочи уксусной или лимонной кислотой.

При механическом способе наружный покров снимается с овощей шероховатыми рабочими поверхностями при их перемещении. Клубень прижимается к поверхности с таким усилием, чтобы частицы поверхности углубились в клубень и при дальнейшем его движении произошло микросрезание. Очистка механическим способом сопровождается интенсивным действием воды. Места залегания глазков и другие труднодоступные поверхности дочищаются вручную. Процесс трудоемкий и с большими отходами. Избежать этого можно выведением сортов картофеля правильной формы и с поверхностным залеганием глазков.

Глубокий способ очистки снимает поверхность до 15 мм выделяя только центральную часть в виде куба, а наиболее питательный слой в виде отходов используется в технических целях.

Оптимальным способом с точки зрения сохранения питательных веществ при минимальных отходах считается паровой.



Классификация очистительного оборудования. Все очистительное оборудование можно классификациях по следующим признакам:

По функциональному назначению: для очистки овощей и для чистки рыбы от чешуи;

По структуре рабочего цикла: периодического или непрерывного действия;

Форме рабочего органа

Рабочие органы могут быть диски, диски с закругленными краями, конусы, ролики (непрерывного действия), винтовые скребки (для рыбочисток) (см. рисунок 1.3.1).

Поверхность рабочих органов: абразивная, шероховатая металлическая или пластмассовая, щеточная, резиновая, гибкая нить, резиновая.

Виду привода: с индивидуальным приводом и в качестве сменных механизмов.

Отечественные производители и ряд зарубежных фирм выпускают в основном дисковые картофеле-очистительные машины.

Рисунок 1.3.1. Форма рабочих органов очистительного оборудования:

а - дисковые; б - дисковые с закругленными краями; в - конусные; г - роликовые; д- винтовые.

Отечественные производители и ряд зарубежных фирм выпускают в основном дисковые картофелеочистительные машины.

На ПОП существуют два способа удаления поверхностного слоя с продуктов – механический и термический (паровой, огневой и химический).

При огневом способе клубни в термоагрегатах подвергаются в течении нескольких секунд обжигу при температуре 1200-1300 0 С. При этом кожура обугливается и происходит проваривание поверхностного слоя клубней на глубину 0,6-1,5 мм. Далее клубни поступают в моечно-очистительную машину, где с помощью вращающихся щёток и резиновых валиков при обильном воздействии воды с них отделяется кожура и частично проваренный слой.

При паровом способе очистки картофеля клубни через специальное дозирующее загрузочное устройство подаются в рабочую камеру паровой картофелечистки, где подвергаются воздействию острого водяного пара повышенного давления (0,1–1,1 МПа) и температуры. При разгрузке клубни попадают в разгрузочное устройство, где давление быстро снижается до атмосферного. В результате резкого снижения давления влага в слое под кожурой мгновенно превращается в пар, который отслаивает и разрывает кожуру клубней. За счёт повышенной температуры верхний слой клубней проваривается. Затем клубни поступают в моечно-очистительную машину, где с них счищаются кожура и частично проваренный слой. При термическом способе очистки в зависимости от вида и сорта очищаемых овощей время их обработки в термоагрегате может регулироваться.

Химический способ очистки картофеля основан на обработке его раствором щелочи.

В одних случаях подогревается непосредственно раствор щелочи, в других – клубни, вынутые из щёлочи. Затем клубни очищаются на роликовых машинах и промываются от щелочи. Далее очищенные клубни обрабатываются раствором лимонной или уксусной кислоты для нейтрализации остатков щёлочи.

При механическом способе наружный покров картофеля сдирается о шероховатую поверхность рабочего органа и стенки рабочей камеры машины. При этом между поверхностью клубня, шероховатой поверхностью рабочего инструмента и стенками рабочей камеры должно быть относительное движение. Одновременно клубень должен прижиматься к шероховатой поверхности с определённым усилием, чтобы частички шероховатой поверхности могли углубиться в клубень и при дальнейшем его движении произвести микросрезы кусочков с поверхности клубня. Во время очистки в рабочую камеру подаётся вода, которая смывает отдельные частички кожуры и выносит их из рабочей камеры машины. При механическом способе клубни картофеля должны быть откалиброваны.

Моечно-очистительная машина (пиллер) предназначена для удаления загрязнений и очистки клубней картофеля и корнеплодов после термической обработки.

После обработки термическим или паровым методами клубни из термоагрегата или парового картофелечистки поступают в пиллер, в котором с клубней счищается и смывается термически обработанная кожура и частично проваренный слой. После включения электродвигателя и открытия водяного вентиля на водопроводе с разбрызгивателями клубни подаются конвейером в загрузочный бункер, ссыпаются в нижнюю цилиндрическую часть рабочей камеры, продвигаются вдоль нее с помощью шнека, одновременно очищаясь щетками от кожуры и загрязнений. Последний виток шнека продвигает очищенные клубни в разгрузочное устройство.

Машина моечно-очистительная (пиллер):

а - общий вид; 1 - электродвигатель; 2 - рабочие валики; 3 - стенки; 4 - загрузочное устройство; 5 - камера; 6 - коллектор; 7 - шнек; 8 - разгрузочное устройство; 9 - щетки; б - кинематическая схема


Моечно-очистительная роликовая машина:

1 - корпус; 2 - сырьевой бункер; 3 - вентиль душевого рассекателя; 4 - поперечная перегородка; 5 - душ; 6 - лоток для очищенных клубне- и корнеплодов; 7 - абразивные ролики; 8 - механизм изменения угла наклона машины; 9 - патрубок для выпуска отработанной воды


Вибрационная овощемоечная машина ММВ-2000.

1 – основание; 2 – сливной люк, 3 – дебалансы;

4 – вал;5 – винтовой канал; 6 – загрузочная воронка; 7 – водяной душ; 8 – упругая муфта; 9 – электродвигатель


Принципиальная схема вибрационной овощемоечной машины ММВ-2000:

1 – рама; 2, 3 – вертикальные и горизонтальные пружины; 4 – внутренний цилиндр (ротор); 5– рабочий вал; 6– груз; 7– шнек; 8– загрузочный лоток; 9– разбрызги­ватель воды; 10 – наружный цилиндр; 11 – сферический подшипник;

12 – муфта; 13 – электродвигатель; 14 – решетка;

15 – патрубок; 16 – разгрузочный лоток


Схемы моечных устройств освобождения продуктов и материалов от загрязнений:

а – с обливанием продукта водой; б – с пропусканием продуктов через толщу воды; в – с перемешиванием продуктов лопастями и воздействием воды; г – с перемешиванием продуктов во вращающемся барабане и воздействием воды; д – с перемешиванием продукта вращающимся рабочим органом с волнообразной поверхностью и воздействием воды; е – с перемешиванием продукта с помощью движущейся поверхности и с воздействием воды; ж – со встряхиванием продукта

и воздействием воды

Для очистки пищевого сырья растительного и животного происхождения применяются следующие способы очистки: физический (термический), пароводотермический, механический, химический, комбинированный и обжиг воздухом.

Физический (термический) способ очистки. Сущность парового способа очистки овощей и картофеля заключается в кратковременной обработке (картофеля в течение 60.. .70 с, моркови в течение 40.. .50 с, свеклы в течение 90 с и т. д.) паром под давлением 0,30.. .0,50 МПа и температуре 140... 180 °С для проваривания поверхностного слоя ткани с последующим резким снижением давления.

В результате обработки паром кожица и тонкий поверхностный слой мякоти (1.. .2 мм) сырья прогреваются, под действием перепада давления кожица вспучивается, лопается и легко отделяется от мякоти. Затем овощи поступают в моечно-очистительную машину, где в результате трения клубней между собой и гидравлического действия струй воды под давлением 0,2 МПа кожица смывается и удаляется. Содержание потерь и отходов зависит от глубины гидротермической обработки и степени размягчения подкожного слоя. Отходы при паровом способе очистки составляют, %: для свеклы - 9... 11, картофеля - 15... 2 5, моркови - 10... 12.

Паровой способ очистки сырья имеет следующие преимущества по сравнению с другими способами очистки: овощи любых форм и размеров хорошо очищаются, что устраняет необходимость их зрительного калибрования; обработанные овощи имеют сырую мякоть, что особенно важно при дальнейшем измельчении на резательных машинах; минимальные потери вследствие малой глубины обработки подкожного слоя овощей; минимальные изменения качества по цвету, вкусу и консистенции; сведение к минимуму возможных механических повреждений.

Пароводотермический способ очистки предусматривает гидротермическую обработку (водой и паром) овощей и картофеля. В результате гидротермической обработки ослабляются связи между клетками кожицы и мякоти и создаются условия для механического отделения кожицы.

Пароводотермическая обработка сырья состоит из следующих стадий:

Тепловая обработка сырья паром в четыре этапа: 1) нагревание, 2) бланширование, 3) предварительная и 4) окончательная доводка;

Водяная обработка осуществляется частично в автоклаве за счет образующегося конденсата и в основном в термостате в течение 5... 15 мин в зависимости от вида и размеров сырья и моечно-очистительной машины;

Механическая обработка проводится в моечно-очистительной машине за счет трения клубней между собой;

Охлаждение под душем после обработки в моечно-очистительной машине.

Пароводотермическая обработка сырья приводит к физико-химическим и структурно-механическим изменениям сырья: коагуляции белковых веществ, клейстеризации крахмала, частичному разрушению витаминов и др. При этом происходит размягчение ткани, увеличивается водо- и паропроницаемость клеточных оболочек, форма клеток приближается к шарообразной, что увеличивает клеточное пространство.

Режимы пароводотермической обработки овощей и картофеля устанавливают в зависимости от размеров сырья. Для улучшения и ускорения очистки моркови применяют комбинированную обработку с добавлением в термостат щелочного раствора в виде гашеной извести из расчета 750 г Са(ОН)2 на 100 л воды (0,75 %).

Большие потери и отходы при пароводотермическом способе обработки являются его основным недостатком.

Механический способ очистки заключается в удалении кожицы продуктов животного и растительного происхождения путем стирания ее шероховатыми (абразивными) поверхностями, а также в удалении несъедобных или поврежденных тканей и органов овощей и фруктов, извлечении семенных камер или косточек у фруктов, срезании донца и шейки у лука, удалении листовой части и тонких корешков у корнеплодов ножами, высверливании кочерыжки у капусты. Очистка методом истирания кожицы проводится при непрерывной подаче воды для смывания и удаления отходов.

Качество очистки и количество получаемых отходов зависят от способа очистки, конструктивных особенностей оборудования, сорта, условий и длительности хранения сырья и других факторов. В среднем содержание отходов при механической очистке составляет 35...38 %.

Необходимо следить за состоянием насечки на абразивной поверхности. Перегрузка или недогрузка ухудшают качество очистки. При перегрузке увеличивается продолжительность пребывания клубней в машине, что приводит к большим потерям корнеплодов за счет излишнего истирания и неравномерной очистки всей загружаемой порции сырья. При недогрузке происходит снижение производительности и частичное разрушение тканей корнеплода от ударов клубней о стенки машины, что вызывает потемнение продукта после чистки.

В качестве рабочих органов используют не только абразивные поверхности, но и рифленые резиновые ролики.

Очистка лука заключается в обрезке верхней заостренной шейки и нижнего коричневого донца (корневой мочки), как правило, вручную и снятии шелухи с помощью сжатого воздуха.

У луковиц предварительно обрезают шейку и донце, а затем помещают в цилиндрическую очистительную камеру, дно которой сделано в виде вращающегося диска с волнистой поверхностью. Одновременно в камеру подают сжатый воздух. При вращении дна и ударе о него и стенки камеры кожица отделяется от луковиц и сжатым воздухом выносится в циклон, а очищенный лук выгружается из камеры. Иногда вместо сжатого воздуха используется вода, подаваемая под давлением.

Количество полностью очищенных луковиц может достигать 85 %.

Сжатый воздух также используется для очистки чеснока от кожицы.

Химический способ очистки заключается в том, что овощи, картофель и некоторые фрукты и ягоды (слива, виноград) обрабатывают нагретыми растворами щелочей, преимущественно растворами едкого натра (каустической соды), реже - едкого кали или негашеной извести.

Сырье, предназначенное для очистки, загружают в кипящий щелочной раствор. В процессе обработки протопектин кожуры подвергается расщеплению, связь кожицы с клетками мякоти нарушается и она легко отделяется и смывается водой в щеточных, роторных или барабанных моечных машинах в течение 2...4 мин водой под давлением 0,6...0,8 МПа.

Продолжительность обработки сырья щелочным раствором зависит от температуры раствора и его концентрации, а также от сорта сырья и времени (сезона) переработки.

Для уменьшения расхода щелочи и моечной воды и для обеспечения наиболее тесного контакта щелочного раствора с поверхностью овощей и облегчения последующей отмывки щелочи в рабочий раствор добавляют поверхностно-активные вещества (ПАВ). Применение ПАВ, понижающего поверхностное натяжение щелочного раствора, позволяет уменьшить концентрацию щелочного раствора в два раза и сократить отходы сырья при очистке на 10...45 %.

Оборудование для проведения щелочной обработки выполняется в виде специальной ванны с перфорированным вращающимся барабаном или с барабаном с вращающимся шнеком.

Комбинированный способ очистки предусматривает сочетание двух и более факторов, воздействующих на обрабатываемое сырье (пара и щелочного раствора, щелочного раствора и механической очистки, щелочного раствора и инфракрасного нагрева и др.).

При щелочно-паровом способе очистки картофель подвергают комбинированной обработке щелочным раствором и паром в аппаратах, работающих под давлением или при атмосферном давлении. При этом применяют более слабые щелочные растворы (5 %), что позволяет снизить расход щелочи и уменьшить отходы по сравнению со щелочным способом.

При щелочно-механическом способе очистки обработанное в слабом щелочном растворе сырье подвергают кратковременной очистке в машинах с абразивной поверхностью.

Сущность щелочно-инфракрасно-механического способа очистки заключается в обработке клубней в щелочном растворе концентрацией 7... 15 % при температуре до 77 °С в течение 30...90 с. Затем клубни направляют в перфорированный вращающийся барабан, где они подвергаются инфракрасному обогреву. При этом происходит испарение воды из кожицы клубня и увеличивается концентрация находящегося в поверхностном слое щелочного раствора.

Механическая очистка производится в очистительной машине с гофрированными резиновыми валиками.

Комбинированные способы очистки позволяют уменьшить содержание отходов и потерь. Однако значительные энергозатраты не позволяют в полной мере реализовать их преимущества. Отходы при комбинированных способах очистки составляют 7... 10 %, расход воды в 4... 5 раз меньше, чем при химической (щелочной) очистке.

Сырье после очистки нуждается в инспекции и доочистке. При этом у корнеплодов и картофеля удаляют остатки кожицы, больные, поврежденные и подгнившие места, глазки у картофеля, ботву у моркови и свеклы, шейки и донца у луковиц. До настоящего времени эта трудоемкая операция осуществляется вручную на специальных инспекционных транспортерах. При механической дочистке разрушается большое количество клеток, в результате на поверхности корнеплода выделяется некоторая часть крахмала, свободных аминокислот, ферментов и других легкоокисляющихся веществ, которые взаимодействуют с кислородом воздуха и вызывают потемнение продукта. Для предотвращения этого инспекционные транспортеры оборудуют специальными ванночками.

Обжиг воздухом производится при температуре 800... 1300 °С в течение 8... 10 с, в подкожном слое картофеля влага почти мгновенно превращается в пар, который и отделяет кожицу от мякоти клубня и разрывает ее. Обжиг ведется во вращающихся футерованных барабанах, обогреваемых продуктами сгорания природного газа или жидкого топлива. Он может быть осуществлен в печах с электронагревом при перемещении продукта в лотках цепным транспортером.

Очистка поверхности зерна от пыли, надорванных в процессе обработки плодовых оболочек, а также частичное отделение зародыша и бородки производятся в обоечных машинах.

Технологическую эффективность очистки зерна оценивают снижением зольности, при этом нормируют его дробление. Обработка зерна в обоечных машинах считается эффективной, если снижение зольности будет не менее 0,02 %, а количество битых зерен увеличивается не более чем на 1 %.

Основными факторами, влияющими на технологическую эффективность и производительность обоечных машин, являются окружная скорость бичевого ротора, нагрузка, расстояние между кромкой бичей и ситовым цилиндром, характер и состояние ситовой поверхности, влажность зерна и др.

Щеточные машины предназначены для очистки поверхности и бородки зерна от пыли и снятии надорванных оболочек, образующихся после пропуска зерна через обоечные машины.

В технологическом процессе переработки крупяных культур с зерна удаляют цветковые пленки, плодовые и семенные оболочки. В зависимости от структурно-механических, физико-химических свойств и особенностей зерна, его биологических особенностей шелушение проводят в шелушильных и шлифовальных машинах различных конструкций.

Процесс шлифования заключается в окончательном удалении с поверхности ядра (семени) оставшихся после шелушения оболочек (и частично зародыша), а также в обработке крупок до установленной формы (округлой, шаровидной) и требуемого внешнего вида.

Гребнеотделительные машины предназначены для дробления винограда и отделения гребней. Причем под дроблением понимается разрушение кожицы ягод и их клеточной структуры, облегчающее получение сока. Степень измельчения винограда существенно влияет на выход сусла-самотека и скорость суслоотделения.

Процесс дробления винограда проводится с отделением или без отделения гребней. В первом случае в сусле меньше дубильных веществ, зато во втором - процесс ускоряется за счет того, что гребни препятствуют спрессовыванию мезги и улучшают дренаж.

Протирочные машины используются в производстве пюреобразных продуктов, соков, концентрированных томатопродуктов и других растительных полуфабрикатов. Они служат для разделения растительного сырья на две фракции: жидкую с мякотью, из которой изготавливаются консервированные продукты, и твердую, представляющую собой отходы (кожица, семена, косточки, плодоножки и т. п.).

Протирание - это процесс отделения массы плодоовощного сырья от косточек, семян, кожуры путем продавливания на ситах через отверстия с диаметром 0,7...5,0 мм.

Финиширование - это дополнительное, более тонкое измельчение протертой массы путем пропускания через сито с диаметром отверстий менее 0,4 мм.

В процессе протирания или финиширования перерабатываемая масса попадает на поверхность движущегося бича. Под действием центробежной силы она прижимается к рабочему ситу. Полуфабрикат через отверстия проходит в сборник, а отходы под действием силы, обусловленной углом опережения бичей, продвигаются к выходу рабочего сита.

Снятие шкур и перьевого покрова с туш. Отделение шкуры возможно механическим, тепловым, химическим или комбинированным способами. На предприятиях мясной промышленности наибольшее распространение получили машины для механического отделения шкуры. В зависимости от вида туш их подразделяют на установки для крупного и мелкого рогатого скота и для свиных туш.

При проектировании установок для механического съема шкур крупного рогатого скота необходимо учитывать следующие требования: перед съемом шкуры туша должна быть зафиксирована с предварительным натяжением 20...100 % от натяжения при отделении шкур. Съем ведут в определенной последовательности. Сначала шкуру снимают с лопаток, шеи, грудной клетки, боков и частично со спины со скоростью 8... 10 м/мин, а затем отделяют остальную часть шкуры, чтобы исключить ее загрязнение в процессе съема. При отвесной фиксации угол наклона туши к горизонту принимают 70°. Съем шкур с мелкого рогатого скота осуществляют в той же последовательности, что и для крупного рогатого скота. Съем шкур свиней проводят с использованием электрического тельфера или лебедки.

Снятие оперения с тушек кур, цыплят, индеек и водоплавающей птицы является одной из трудоемких операций.

Принцип работы большинства машин и автоматов, снимающих оперение с тушек птицы, основан на использовании силы трения резиновых рабочих органов по оперению. При этом необходимо, чтобы сила трения, возникающая при соприкосновении поверхности рабочего органа с оперением, превышала силу сцепления оперения с кожей тушки.

Силу трения вызывает сила нормального давления рабочих органов, действующая на оперение. Так, в пальцевой машине сила нормального давления рабочих органов на тушку возникает под действием массы тушки. При обработке на этой же машине частей тушки - крыльев, головы, шеи, масса которых незначительна, приходится прижимать их к рабочим органам, чтобы увеличить силу трения при скольжении их по оперению.

В автоматах бильного типа сила нормального давления возникает в результате энергии удара бил о тушку, в автоматах центробежного - за счет центробежной силы и массы тушки. Имеются автоматы, где сила нормального давления возникает за счет сил упругой деформации рабочих органов.

На разных участках тушки оперение удерживается с различной силой. В машинах и автоматах для снятия оперения сила трения строго ограничена, так как она наряду с удалением оперения повреждает кожный покров тушки в тот момент, когда рабочие органы. воздействуют на участки тушки без оперения.

Иногда на птицеперерабатывающих предприятиях сталкиваются с необходимостью переработки водоплавающей птицы в период линьки. При этом на автоматах для ощипки на тушках после обработки остаются неудаленные пеньки. Пеньки с тушек такой птицы удаляют воскованием, во время которого с тушек удаляются и другие остатки оперения.

Воскование положительно влияет на качество обработки: сглаживаются дефекты технологической обработки, улучшаются цвет и товарный вид тушек птицы благодаря образованию тонкого глянцующего слоя воскомассы на поверхности. При восковании удаляется волосовидное перо и отпадает необходимость газовой опалки тушек.

Хорошая воскомасса характеризуется большой величиной адгезии к оперению и незначительной к коже птицы, высокой пластичностью и в то же время достаточной хрупкостью в застывшем состоянии, хорошими регенерирующими свойствами. В настоящее время в промышленности используют преимущественно синтетическую воскомассу, в состав которой входят парафин, полиизобутилен, бутилкаучук, кумароно-инденовая смола.

Вроде бы не такой уж сложный вопрос: нужно просто срезать кожуру с корнеплода и всё. Но в сегодняшней жизни не хочется тратить на это много времени... И действительно человечество не стоит на месте и его пытливый ум коснулся и этой стороны нашей жизни. Существует три способа сделать это с максимальным для себя комфортом:

Механический.

Термический.

Химический.

Первый - это вручную (механический), ножом. Помимо ножей классической формы существует масса специальных ножей для чистки картофеля. По строению, их можно разделить на две группы: ножики с режущей поверхностью, параллельной продольной оси рукоятки и ножи с режущей поверхностью, перпендикулярной продольной оси рукояти. Второй вид имеет плавающее лезвие, призванное облегчать процесс чистки, но применение тех или других - дело привычки и личных предпочтений и ни как не отразится на готовом блюде. От себя заметим, что специальные ножи гораздо экономичнее, удобнее и безопаснее.

Второй способ представляет собой сплав достижений человечества. Речь о картофелечистках.

На предприятиях общественного питания малой и средней мощности в овощных цехах устанавливают картофелечистки. Все предшествующие операции - сортировка, мытье и последующее - удаление глазков, доочистка осуществляется вручную.

Механический способ применяется для очистки корне-клубнеплодов и рыбы. Это наиболее распространенный способ очистки. Сущность очистительного процесса овощей при механическом способе заключается в истирании поверхностного слоя (кожуры) клубней об абразивную поверхность рабочих органов машины и удалении частиц кожуры водой.

Термический способ имеет две разновидности:

Сущность парового способа очистки состоит в том, что при кратковременной обработке корне-клубнеплодов острым паром давлением 0,4…0,7МПа, поверхностный слой продукта проваривается на глубину 1…1,5мм, а при резком снижении давления пара до атмосферного кожура растрескивается и легко отслаивается в результате мгновенного превращения в пар влаги поверхностного слоя клубня. Затем термически обработанный продукт. Паровая картофелечистка (рис.) состоит из наклонной цилиндрической камеры 3, внутри которого вращается шнек 2. Вал его выполнен в виде полой перфорированной трубы, через которую подается пар давлением 0,3…0,5 МПа, с температурой 140…1600С.Поступающий на обработку продукт загружается и разгружается через шлюзовые камеры 1и 4, что обеспечивает герметичность рабочей цилиндрической камеры 3 в процессе загрузки и выгрузки продукта. В приводе шнека предусмотрен вариатор, позволяющий изменить частоту вращения, а, следовательно, и продолжительность обработки продукта. Установлено, что чем выше давление, тем меньше требуется времени на обработку сырья. В паровой картофелечистке непрерывного действия на сырье оказывается комбинированное воздействие пара, перепада давления и механического трения при перемещении продукта шнеком. Шнек равномерно распределяет клубни, обеспечивая равномерность их обработки паром. Из паровой картофелечистки клубни поступают в моюще-очистительную машину (пиллер), где с них очищается и смывается кожура. При огневом способе очистки клубни в специальных термоагрегатах подвергаются в течение нескольких секунд обжигу при температуре 1200…1300 0С, в результате чего кожура обугливается и происходит проваривание верхнего слоя клубней (0,6…1,5 мм). Затем обработанный картофель поступает в пиллер, где удаляется кожура и частично проваренный слой.

Термический способ очистки применяется па поточных линиях обработки картофеля на крупных предприятиях общественного питания.

Химический способ основан на обработке клубней раствором щелочи с последующим снятием обработанного слоя в роликовых овощемоечных машинах. Затем клубни подвергают нейтрализации раствором лимонной и уксусной кислоты. На большинстве предприятий общественного питания применяется в основном механический способ очистки картофеля, который наряду с существенными недостатками этого способа (достаточно высокий процент отходов, необходимость ручной доочистки - удаление глазков) обладает определенными преимуществами, основными из которых являются: очевидная простота самого процесса очистки корне-клубнеплодов с использованием абразивных инструментов, компактное машинное оформление процесса, а также более низкие энергетические и материальные затраты по сравнению с термическими способами очистки корне-клубнеплодов (отсутствие необходимости расходование пара, топлива и применение моющей очистительной машины).

Механический способ очистки картофеля реализуется на специальных технологических машинах, имеющих ряд модификаций по производительности, конструктивному исполнению и применению.

Каждый из перечисленных способов имеет свой недостатки. Известно, что картофель - сырье для производства крахмала. При химическом и термическом способах очистки отходы не могут быть использованы для последующей переработки на крахмал. При механическом способе очистки некоторые участки поверхности клубней многократно соприкасаются с рабочими шероховатыми поверхностями. При этом снимается не только поверхностный слой, но и часть самого клубня, что приводит к повышенным потерям продукта, но их можно переработать в крахмал.

 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!